Getting Started
Introduction to DataMetric
DataMetric is an enterprise-grade data governance platform that combines comprehensive metadata management with interactive analytics capabilities.
DataMetric helps organizations understand, govern, and utilize their data assets effectively. Our platform provides:
- Automated metadata extraction from your data sources
- End-to-end data lineage tracking and visualization
- Fine-grained access control and data policies
- Interactive analytics and BI capabilities
System Requirements
Before you begin, ensure you have the following
Development Environment
- • Node.js 18+ or Python 3.9+
- • 4GB RAM minimum
- • 10GB available disk space
- • macOS, Linux, or Windows
Production Deployment
- • Kubernetes 1.24+ or Docker
- • PostgreSQL 14+
- • Redis 6+ (for caching)
- • Object storage (S3, GCS, or Azure Blob)
Installation
Install the CLI
Install the DataMetric CLI using your preferred package manager
# Install DataMetric CLI
npm install -g @datametric/cli
# Initialize your project
datametric init my-project
# Connect to your data source
datametric source add postgres --host localhost --port 5432Python SDK Installation
Use pip to install the Python SDK
pip install datametric-clientNode.js SDK Installation
Use npm or yarn to install the TypeScript/JavaScript SDK
npm install @datametric/sdkConfiguration
Basic Configuration
Configure your DataMetric instance
Environment Variables
# API Configuration
DATAMETRIC_API_ENDPOINT=https://api.datametric.io
DATAMETRIC_API_KEY=your-api-key-here
# Environment
DATAMETRIC_ENVIRONMENT=production
# Optional: Custom domain
DATAMETRIC_DOMAIN=data.yourcompany.comConnecting Data Sources
Connect your databases, data warehouses, and BI tools
PostgreSQL
datametric source add postgres \\--host localhost \\--port 5432 \\--database mydb \\--username user \\--schema public
Snowflake
datametric source add snowflake \\--account xy12345 \\--warehouse compute_wh \\--database analytics
API Reference
REST API
Programmatic access to all DataMetric features
Authentication
All API requests require an API key in the Authorization header:
Authorization: Bearer your-api-key-hereCommon Endpoints
GET /api/v1/datasetsList all datasetsPOST /api/v1/datasetsCreate a datasetGET /api/v1/lineage/:idGet lineage graphPOST /api/v1/policiesCreate data policyCode Examples
SDK examples in popular languages
Python SDK
pythonfrom datametric import DataMetricClient
# Initialize the client
client = DataMetricClient(
api_key="your-api-key",
endpoint="https://api.datametric.io"
)
# Register a dataset
dataset = client.datasets.create(
name="customers",
source="postgres",
description="Customer master data"
)
# Track lineage
client.lineage.track(
upstream="raw.customers",
downstream="cleaned.customers"
)TypeScript SDK
typescriptimport { DataMetric } from '@datametric/sdk';
const client = new DataMetric({
apiKey: process.env.DATAMETRIC_API_KEY,
environment: 'production'
});
// Query metadata
const datasets = await client.datasets.list({
filter: { domain: 'finance' },
include: ['lineage', 'owners']
});
// Create a data policy
await client.policies.create({
name: 'PII Access Control',
rules: [{
field: 'contains_pii',
action: 'restrict',
roles: ['analyst']
}]
});Security & Compliance
Security Best Practices
Keep your data governance platform secure
Use API Keys
Rotate API keys regularly and never expose them in client-side code.
Enable SSO
Configure SAML or OIDC for single sign-on with your identity provider.
Audit Logging
Enable comprehensive audit logging for compliance and security monitoring.
Network Policies
Restrict access to your DataMetric instance using IP allowlists and VPN requirements.